next up previous contents
Next: Relationship of the temperature Up: SEEING Previous: Temperature structure coefficient

Full Width Half Maximum

The Full Width Half Maximum (FWHM) of the seeing disk is the angular diameter at half height of the point spread function (PSF):
 \begin{displaymath}\theta = 2.591\cdot 10^{-5} \, \lambda^{-1/5}\left[ (\cos \gamma)^{-1}\int_{\rm H} C_{N}^{2}(z) dz \right]^{3/5}\end{displaymath} (7)
  

For a vertical direction and $\lambda$ = 500 nm, the FWHM angle in typical conditions of astronomical mountain sites (pressure 770 mb, temperature 10$^\circ$C) is expressed as:

 \begin{displaymath}\theta = 0.94 \left[ \int_{\rm H}{C_{\scriptscriptstyle T}^2(z)}dz \right]^{3/5}\end{displaymath} (8)
  

The diagram at fig. 2.2 illustrates the order of magnitude of the seeing effect with respect to a mean value of $\overline {C_T^2}$ and the integration distance. Depending on the geometric scale of the phenomenon causing seeing, the critical values of $\overline {C_T^2}$ will be very different: for instance, if we set at 0.1 arcsec an arbitrary threshold for "bad" seeing from a single cause, the corresponding critical (mean) value of CT2 will be

Equations (7) and following show that the overall seeing effects may be considered a 5/3-exponent sum of different terms corresponding to the different atmospheric layers. Thus if $\theta_n$is natural seeing FWHM, caused by the boundary layer and upward, and $\theta_l$ is the local seeing, the overall seeing is:

 \begin{displaymath}\theta = \left( \theta_n^{5/3} + \theta_l^{5/3} \right)^{3/5}\end{displaymath} (9)
 
 
 
\begin{figure}\centerline{\psfig{figure=/home/lorenzo/study/seeing/F_CT_z.ps,height=8cm}}\end{figure}
 Figure 1: Parameterisation of seeing FWHM with respect to a mean value of $\overline {C_T^2}$ (K2 m-2/3) integrated over a distance z.


next up previous contents
Next: Relationship of the temperature Up: SEEING Previous: Temperature structure coefficient 
Lorenzo Zago

1998-07-05