next up previous contents
Next: The free convection case Up: SEEING Previous: Full Width Half Maximum

Relationship of the temperature structure coefficient to the mean velocity and temperature fields

The parameterization of \(C_{\scriptscriptstyle T}^2\) in terms of the temperature and velocity fields in the atmospheric surface layer is obtained using the similarity theory. One expression, derived by Wyngaard[9], is
 \begin{displaymath}C_T^2 = f(Ri) \left( \frac{dT}{dz} \right)^2 z^{\frac{4}{3}}\end{displaymath} (10)
 

where Ri is the Richardson number:

\begin{displaymath}Ri = \frac{g}{T} \frac{dT}{dz}\left(\frac{dU}{dz}\right)^{-2} \end{displaymath}

The function f(Ri) (tabulated by Wyngaard[9]) is obtained from experimental measurements.

By choosing other scaling variables, namely the friction velocity u* and the normalized surface heat flux q (in K m s-1), and as the stability parameter the ratio z/L, where L is the Monin-Obukhov length

\begin{displaymath}L = - \frac{u_*^3 T}{k g q} \end{displaymath}

Wyngaard[9] obtains another expression for $C_{\scriptscriptstyle T}^2$ :

 \begin{displaymath}C_T^2 = g(z/L) \left( \frac{q}{u_*} \right)^2z^{-\frac{2}{3}}\end{displaymath} (11)
 

where g(z/L) is an empirical function evaluated from experimental data as:

g(z/L) = $\displaystyle 4.9 \left( 1 - 7 \frac{z}{L}\right)^{-\frac{2}{3}} \; \; \; \; \; \; \; \; \; \; \;\frac{z}{L} < 0$ (12)
g(z/L) = $\displaystyle 4.9 \left( 1 + 2.75 \frac{z}{L}\right)^{-\frac{2}{3}} \; \; \; \; \; \; \; \; \; \; \;\frac{z}{L} > 0$ (13)
  

We note also that $C_{\scriptscriptstyle T}^2$ can also be put in relation with the outer scale of turbulence Lu:

 \begin{displaymath}C_{T}^{2} = a^2 \beta L_u^{4/3} \left(\frac{dT}{dz} \right)^2\end{displaymath} (14)
 
 
 
\begin{figure}\centerline{\\hspace{-10mm}\psfig{figure=/home/lorenzo/study/seeing/CT_z_q.ps,width=10cm}}\end{figure}
Figure 2: Relationship between CT2 (K2 m-2/3), height and surface heat flux in free convection over a horizontal surface 


next up previous contents
Next: The free convection case Up: SEEING Previous: Full Width Half Maximum 
Lorenzo Zago

1998-07-05